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  Despite improved rational drug design and a remarkable progress in genomic, 
proteomic and high-throughput screening methods, the number of novel, 
single-target drugs has fallen much behind expectations during the past 
decade. Multi-target drugs multiply the number of pharmacologically 
relevant target molecules by introducing a set of indirect, network-dependent 
effects. Parallel with this, the low-affinity binding of multi-target drugs eases 
the constraints of druggability and significantly increases the size of the 
druggable proteome. These effects tremendously expand the number of 
potential drug targets and introduce novel classes of multi-target drugs with 
smaller side effects and toxicity. Here, the authors review the recent progress 
in this field, compare possible network attack strategies and propose several 
methods to find target-sets for multi-target drugs. 
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    1.   Introduction: emergence and rationale 
of the multi-drug concept 

 Recent drug development strategies were based on the emergence of potential targets 
in genomic and proteomic studies. Therefore, the drug development paradigm 
followed at present can be summarized as to: i) find a target of clinical relevance; 
ii) identify the ‘best-binder druggable molecule’ by high-throughput screening 
(HTS) of large combinatorial libraries and/or by rational drug design based on the 
three-dimensional structure of the target; iii) provide a set of proof-of-principle 
experiments; and iv) develop a technology platform leading to clinical applications. 
However, despite all the considerable drug development efforts undertaken, the 
number of successful drugs and novel targets fell significantly behind the expectations 
during past decades  [1-3] . 

 A number of novel strategies have been developed to overcome the target shortage 
and to add novel classes of drugs to development pipelines. Many of these drug 
development directions aim to influence multiple targets in a parallel fashion. One 
of the most widespread multiple target approaches, combination therapy, is increas-
ingly used to treat many types of diseases, such as AIDS, atherosclerosis, cancer 
and depression. As one of the newly developed combination therapies, ‘multi-target 
lead discovery’ is a promising tool for the identification of unexpectedly novel effects 
of drug combinations  [4-8] . Recently, initial steps have been taken to develop aptamer 
combinations against complex sets of targets  [9] . 

 Multiple target strategies have only recently been rediscovered by drug developers. 
Snake and spider venoms are both multi-component systems and plants have 
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also developed a combinative strategy to defend themselves 
against pathogens. In addition, traditional medicaments and 
remedies often contain multi-component extracts of natural 
products  [10,11] . All these examples show that multiple target 
strategies have benefits, which were used as medicaments by 
human ancestors several thousand years ago and have 
withstood a million-year evolutionary selection. 

 Agents aiming at only a single target (‘single-hits’) might 
not always affect complex systems in the desired way, even 
if they completely change the behavior of their immediate 
target. Single targets might have ‘back-up’ systems that are 
sometimes different enough so as to not respond to the 
same drug. Moreover, many cellular networks are robust and 
prevent major changes in their outputs, despite dramatic 
changes in their constituents  [12-15] . These considerations are 
independent of whether or not the pharmacologic agent 
inhibits or activates its target. 

   2.   Examples for multi-target strategies 

 Several efficient drugs, such as salicylate, non-steroidal anti-
inflammatory drugs (NSAIDs), metformin, antidepressants, 
antineurodegenerative agents and multi-target kinase 
inhibitors (such as Imatinib, or the inhibitors of the kinase-
maturating molecular chaperone, Hsp90), affect many targets 
simultaneously  [7,16-24] . Multi-target antibodies (in forms of 
diabodies, triabodies, tetrabodies and recombinant polyclonal 
antibodies) are increasingly used in cancer therapy to delay 
the development of resistance  [25,26] . 

 It may be found that a large number of terms used at 
present to describe ligands have multiple activities: the 
words balanced, binary, bivalent, dimeric, dual, mixed or 
triple are all used in combination with various suffixes, such as 
agonist, antagonist, blocker, conjugate, inhibitor or ligand. 
Various pharmacophores may have an increasing overlap, 
which gives an almost continuous spectrum starting from 
the conjugates (or cleavable conjugates, which are actually 
a novel chemical form of combinational therapies) to the 
overlapping pharmacophores, until the highly integrated 
multi-target drugs ( Figure 1   [7,19] ). 

C. Integrated
multi-target

drug
B. Overlapping

pharmacophoresA. Conjugate

Figure 1. Variants of multi-target drugs. A. The increasing 
overlap of pharmacophores gives an almost continuous 
spect rum start ing from conjugates. B. Via slightly overlapping 
pharmacophores. C. Until highly integrated multi-target drugs.

 Multi-target drugs offer a magnification of the ‘sweet spot’ 
of drug discovery  [1] , meaning the overlap between pathways, 
which are interesting from the pharmacologic point of view, 
and the hits of chemical proteomics, which represent those 
proteins that can interact with druggable molecules (meaning 
small, hydrophobic molecules with a good bioavailability). 
The sweet spot represents those few hundred proteins, which are 
both parts of these interesting pathways and are druggable  [1] . 
The option to allow indirect effects via network-contacts 
of multi-target drugs expands the first circle, as the number of 
those proteins, which are indirectly related to existing targets 
of pharmacologically important pathways, is by magnitudes 
greater than the number of the targets themselves. On the 
other hand, the low-affinity binding of multi-target drugs 
enlarges the second circle, as it eases the constraints of 
druggability. Small, hydrophobic molecules bind to only a 
small subset of proteins with high affinity. However, the very 
same molecules interact with 10 or even 100 times more proteins 
with increasingly lower and lower affinity. Here, low affinity 
binding describes interactions with dissociation constants in 
the higher macromolar or even close to the millimolar range. 
Low affinity binding also implies a more transient interaction 
(where the off-rate is comparable or higher than the on-rate). 
As a result of these combined effects, the sweet spot of drug 
discovery may easily become a wide candy-field ( Figure 2 ). 

   3.   Cellular networks: drug target maps 

 Cellular networks help us to understand the complexity of the 
cell. In the network concept, the complex system is perceived 
as a set of interacting elements that are bound together by links. 
Links usually have a weight, which characterizes their strength 
(affinity, or propensity). Links may also be directed links, 
when one of the elements has a larger influence than the other 
and vice versa. In cellular networks, the interacting molecules 
are considered as the elements and their interactions form the 
weighted, but not necessarily directed, links of the respective 
structural network. Alternatively, directed links may also be 
seen as representations of signaling or metabolic processes of 
the functional networks in the cell ( Table 1   [27-29] ). Cellular 
networks often form small worlds where two elements of the 
network are separated by only a few other elements. Networks of 
our cells contain hubs, that is, elements which have a large 
number of neighbors. These networks can be dissected to over-
lapping modules that form hierarchical communities  [30-32] . 
However, this summary of the main features of cellular networks 
is largely a generalization and needs to be validated through a 
critical scrutiny of the data sets, sampling procedures and 
methods of data analysis at each network examined  [33,34] . 

 Cellular networks offer a lot of possibilities to point out 
their key elements as potential drug targets. An example of 
these possibilities, signaling networks have interdigitated path-
ways and multiple layers of cross-talk  [35] . Special signaling 
elements, such as the PI3 kinase, the Akt kinase or the insulin 
receptor substrate family have been called ‘critical nodes’. 
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These ‘critical nodes’ have multiple isoforms and are important 
junctions of signaling pathways  [36] . Both the bridge elements 
of signaling networks, providing cross-talk and the critical 
nodes, can be important targets of network-based drug 
development. Domain-specific target analysis of protein–
protein interaction networks extends the map of physical 
interactions towards functional understanding. Domain-
specific targets offer a larger flexibility and may actually reflect 
a family of multiple targets due to the frequent re-use of 
domain variants as a result of modular evolution  [37,38] . 
Elements of metabolic and cytoskeletal networks have also 
been analyzed as drug targets  [39,40] . 

 However, present databases of most cellular networks suffer 
a lot of uncertainties. Protein–protein interaction networks 
have a large number of false-positive entries, which makes the 
inclusion and assessment of low-affinity interactions especially 
difficult. Moreover, present databases mostly give an averaged 
probability of the particular interaction. This does not take 
into account if the two proteins are expressed at the same time 
or if they are located in the same cellular compartment at the 
same time. Most databases do not contain the information of 
the ratio of two interacting proteins in the given status of the 
particular healthy or the particular sick cell. Literature-derived, 
evidence-based databases suffer from the nomenclature and 
interpretation problems of the original data. However, recent 
advances connect protein–protein interaction databases with 
protein structure data, which make both the validation and 
prediction of protein–protein interactions more robust  [41-43] . 

 The above-mentioned problem may be overcome by using 
curated databases, which contain only the most valid and most 
accurate information. However, these databases will miss 
most low-affinity interactions and ∼ 80% of the available 

information is lost due to increased scrutiny. As an alternative 
approach, the authors keep all information – taking into 
account that the author’s database becomes ‘fuzzy’ due to the 
inclusion of potentially false data. In this approach to correct 
the errors, highly integrated methods for network analysis are 
needed, which are able to build in all the above information 
and take into account those which are in contradiction with 
most of the others. It is advantageous to use these integrated 
analytical tools in a ‘zoom-in’ fashion, where the user may 
define the integration level of their choice. Low resolution 
network maps can be calculated faster and by directing the 
user’s mind, showing the most important take-home messages 
of the analysis. Zooming in to a high-resolution analysis with 
the same, flexible method, will show the refined details of all 
available information and give the user a large number of cor-
rect (and false) ideas to think about and to test in experiments 
either in the primary ‘hit areas’ of the low-resolution analysis 
or the spots of specific interests based on other assumptions. 

   4.   Multi-target drugs are often 
low-affi nity binders 

 The development of a multi-target drug is likely to produce 
a drug that interacts with its target (having a lower affinity 
than a single-target drug) because it is unlikely that a small, 
drug-like molecule can bind to a number of different targets 
with equally high affinity. However, low-affinity drug binding 
is, apparently, not a disadvantage. For example, memantine 
(a drug used to treat Alzheimer’s disease) and other multi-
target non-competitive NMDA receptor antagonists show that 
low-affinity, multi-target drugs might have a lower prevalence 
and a reduced range of side effects than high-affinity, single-target 

A. The current ‘sweet spot’
of drug discovery

B. Target multiplication,
new drug classes

Novel drug
target-sets

Druggable
proteins

Potential
drug targets

Multi-target
drugs

Potential
drug targets

The total
cellular proteome

The total
cellular proteome

Druggable
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Figure 2. From the ‘sweet spot’ of drug discovery to a potential candy-fi eld. Multi-target drugs may magnify the ‘sweet spot’ of 
drug discovery [1] to a whole candy-fi eld. A. The overlap between pathways, which is interesting from the pharmacological point of view 
and the hits of chemical proteomics, representing those proteins that can interact with druggable molecules, constitutes the ‘sweet spot’ 
of drug discovery. B. Indirect effects of multi-target drugs expand the number of pharmacologically relevant targets, whereas low-affi nity 
binding enlarges the number of druggable molecules.
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drugs  [20,44] . The recent suggestion to use unstructured proteins 
as a novel and un-explored field of drug-targets uses the 
beneficial effects of low-affinity, but rather specific binding, 
which has been shown to be extremely useful in regulation 
and signaling  [45] . Here again, low affinity binding denotes 
interactions with dissociation constants in the higher micro-
molar or even close to the millimolar range. Low affinity 
binding also implies a transient interaction, where the off-rate 
is comparable to or higher than the on-rate. 

 Does low-affinity binding predict a low-efficiency? Not 
necessarily. Most (> 80%) of the cellular protein, signaling and 
transcriptional networks are in a low-affinity or transient ‘weak 
linkage’ with each other. In metabolic networks, weak links are 
those reactions that have a low flux  [29,46] . In this review, the 
authors use the term ‘weak linker’ to denote small molecules 
and drugs that interact with cellular proteins having a low-
affinity. Thus, most multi-target drugs are weak linkers. 
Because most links in cellular networks are weak, a low-affinity 
multi-target drug might be sufficient to achieve a significant 
modification. A recent paper of B N Ames  [47]  on the potential 
impact of micronutrients on disease development is a good 
example of the profound effects emerging from seemingly 
minor interactions. Low affinity, imperfect binding allows the 
development of special, cooperative binding behavior, which 
may lead to a switch-type activation setting a threshold for 
various cellular events, such as DNA replication  [48,49] . 

   5.   Identifi cation of drug targets using the 
network approach: attack strategies 

 Drug design strategies are mostly based on target-driven 
approaches, where an efficient compound to influence disease-
related molecular target is sought. The network approach 
examines the effects of drugs in the context of cellular 
networks. In this model, a drug-induced inhibition of a single 
target means that the interactions around a given target are 
eliminated, whereas partial inhibition can be modeled as a 
partial knockout of the interactions of the target. 

 Cellular networks are usually damaged by random failures, 
such as the oxidative damage of free radicals, the indirect effect 
of somatic mutations and the complex phenomenon of 
ageing  [50] . Opposed to this, drug-driven network attacks are 
targeted to find the most efficient way to influence network 
behavior. Several classes of drugs, such as antibiotics, fungicides, 
anticancer drugs as well as numerous chemical compounds, 
such as pesticides, are designed to destroy the normal function 
of cellular networks. 

 Networks have a number of vulnerable points and, therefore, 
can be attacked in many ways ( Figure 3 ). The first major insight 
identifying a set of weak points in natural networks may came 
from the work of A L Barabasi and co-workers  [30,51] , who 
discovered that many real-world networks (including cellular 
networks) have a scale-free degree distribution, which means 

Table 1. Cellular networks as drug target maps.

Name of cellular 
network

Network elements Network links Potential drug targets

Protein interaction 
network

Cellular proteins Transient or permanent bonds Hubs, bridges, proteins in 
modular centers and overlaps

Cytoskeletal network Cytoskeletal fi laments Transient or permanent bonds Cross-linking proteins

Organelle network Membrane segments 
(membrane vesicles, domains 
and of rafts of cellular 
membranes) and cellular 
organelles (mitochondria, 
lysosomes, segments of the 
endoplasmic reticulum, etc.)

Proteins, protein complexes 
and/or membrane vesicles, 
channels

Proteins and lipid rafts 
regulating inter-organellar 
junctions

Signaling network Proteins, protein complexes, 
RNA (such as micro-RNA)

Highly specifi c interactions 
undergoing a profound change 
(either activation or inhibition) 
when a specifi c signal reaches 
the cell

Hubs, bridge, proteins of 
cross-talks, ‘critical nodes’

Metabolic network Metabolites and small molecules, 
such as glucose, or adenine, etc.

Enzyme reactions transforming 
one metabolite to the other

Metabolic switch enzymes 
and their regulatory proteins, 
channelling

Gene transcription 
network

Transcriptional factors or their 
complexes and DNA gene 
sequences

Functional (and physical) 
interactions between transcription 
factor proteins (sometimes RNAs) 
and various parts of the gene 
sequences in the cellular DNA

Hubs, bridges, proteins in 
modular centers and overlaps
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A. Attacking hubs

C. Attacking bridges D. Attacking weighted bridges

B. Attacking hub-links

Figure 3. Attack scenarios on networks. In this fi gure the authors summarize a number of malicious attacks on vulnerable points 
of networks. A. Attacks on nodes with highest degree (hubs). B. Attacks on ‘hub-links’ with the highest degree of their end points. 
C. Attacks on bridging elements with links having a high betweenness centrality. D. Attacks on bridges having links with the highest 
weighted centrality.

(in simple terms) that these networks have hubs (e.g., nodes 
with a much greater number of neighbors than average). If hubs 
are selectively attacked, the information transfer in most 
scale-free networks soon becomes significantly hindered. In 
other words: hubs are central points of networks. Scale-free 
networks are, however, highly resistant against random damage. 
These two features can be summarized as having a robust, but 
fragile nature of scale-free networks. As an illustration for the 
robustness, 99% of the internet in a random-attack strategy 
may be deleted and the continuity of the network still remains, 
that is, the internet could still be used after such an attack, 
albeit it would be much slower than usual  [52] . On the contrary, 
malicious attacks on hubs may follow a ‘greedy’ strategy, meaning 
that degrees are continuously recalculated after each attack and 
network elements are re-ranked. This greedy strategy is often 
more powerful than using the original degrees of network elements 
throughout the whole process  [53] . 

 Hubs are the centers of networks only from the point of 
local network topology. Another approach for pinpointing 
central elements of network communication is to find those 
elements (or links) that are in a centered position, not in the 
local, but in the global topology. The “betweenness of centrality” 
of a link refers to the number of shortest paths between any 

two elements of the network across the given link. The 
betweenness centrality was worked out initially in social 
networks  [54] , but later it became a preferred centrality measure 
to assess the presumed effect of targeted attacks on network 
stability. Inverse geodesic length (also called network efficiency), 
meaning the sum of the inverse of the shortest paths between 
network elements, is widely used as an indicator of network 
damage after the removal of links or elements  [53,55,56] . 
Alternative measures of the damaging element or link removal 
have also been worked out by Latora and Marchiori  [57] , 
which are based on monitoring of the performance of the 
whole network. 

 Recent studies take into account the weights and directness 
of network links. This is much closer to the real, cellular 
scenario, where protein–protein interactions are characterized 
by their affinity and/or prevalence (link weight) as well as 
direction (e.g., in form of signaling). The removal of the 
links with the highest weighted centralities is often more 
devastating to network behavior than the removal of the 
most central links based on the unweighted version of the same 
network topology  [58] . 

 Another recent approach is to take into account mesoscopic 
centrality network topology measures, which are neither based 
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on local information (such as hubs) or global information 
(such as betweenness centrality), on network structure. Motter 
 et al.   [59]  found that the removal of long-range links connecting 
elements a long distance from each other has a profound 
impact on small-world networks; however, it fails to affect 
many scale-free networks. Another complication is caused by 
multi-layered networks  [101] , where various communities and 
modules are organized in a hierarchical fashion. These studies 
reveal that the use of the complex structural information of 
real world networks needs more sophisticated methods, such as 
an integrated assessment of link density and network topology 
(Kovacs  et al. , manuscript in preparation). 

 The network approach helped to gain ground in drug target 
analysis. Flux-balance analysis (or metabolic control analysis) 
uses a large database of experimental data and calculates all 
of the metabolic rates of the metabolic network, assuming 
that the rates of reactions producing a metabolite must be 
equal with the rates of reactions that consume it. Flux-balance 
analysis of metabolic networks uncovers vulnerable points of 
parasite or pathologic metabolisms providing potential targets 
for efficient drug action  [39,60-62] . Comparison of cellular 
(transcriptional, signaling, protein–protein interaction etc.) 
networks from various genomes helps to identify the function 
of novel proteins and, thus, increases the number of potential 
drug targets  [63,64] . Analysis of protein–protein interactions 
identifies protein contact surfaces as potential sites of drug 
action  [65]  and neural networks have long been applied to help 
in methodological and computational drug design  [66] . 

 Most of the above network-related methods have been used 
so far to steer target identification attempts to single targets 
and a systematic network-based analysis of multi-target drug 
action is still to come. In the authors’ earlier study  [55,67] , a 
multi-target attack on the genetic regulatory networks of the 
bacterium  Escherichia coli  or the yeast  Saccharomyces cerevisiae  
was modeled. A comparison of various strategies suggested 
that multiple, but partial, attacks on carefully selected targets 
were almost inevitably more efficient than the knockout of a 
single target. For example, the largest damage to the  E. coli  
regulatory network was reached by removing an element with 
72 connections. However, the same damage could be achieved 
if three to five nodes were partially inactivated. Multiple attacks 
have proven to be more efficient than a single attack even if the 
number of affected interactions remained the same  [55,67] . 
Thus, the reason underlying the efficiency of multi-target 
attacks was proven not to be trivial, even from a theoretical 
point of view: multi-target attacks were not only better because 
they affected the network at more sites, but they could, espe-
cially if distributed in the entire network, perturb complex 
systems more than concentrated attacks even if the number of 
targeted interactions remained the same. 

   6.    Network diseases 

 The authors’ initial network-based analysis of the potential 
efficiency of multi-target drugs  [55,67]  was based on the topology 

of bacterial and yeast gene regulatory networks, which may be 
regarded as an initial model of the multi-target action of anti-
biotics and fungicides, where network damage corresponds 
well to the desired drug action. For the analysis of multi-target 
drugs affecting specific disease models (e.g., antihypertensive, 
antipsychotic and antidiabetic drugs), more specific signaling, 
metabolic and transcriptional network models are needed. 
As a prelude of this process, several complex multifactorial 
diseases have already been described as ‘network diseases’. 
Cancer was assessed as a systems biology disease by Hornberg 
 et al.   [68] . The complexity of intra- and extra-cellular cancer-
specific changes in signaling, gene-regulatory (and, most 
probably, protein–protein interaction) networks, the profound 
reorganization of cellular metabolism, the multiple types and 
interactions of cells involved and the complexity of all these 
events at various types and subtypes of malignant transformation 
make the name ‘systems biology disease’ well deserved for all 
stages of tumor development. 

 Network effects of continuously changing functional neuron 
assemblies may provide an explanation of the daily fluctuations 
in the symptoms of neurodegenerative diseases. This approach 
may show novel pathways of drug development, leading to 
shorter and cheaper clinical trials that concentrate on the 
short-term attenuation of symptom fluctuations, instead of 
waiting for and monitoring the long-term and rather elusive 
benefits of inhibited neurodegeneration  [69] . As increased 
fluctuations of this efficiency may reflect a general decline in 
the stability of the overall network, which is related to the 
reduction of weak links  [29,46]  – multi-target drugs might be an 
ideal choice to prevent further functional loss in this sense. 
The complexity of neuronal networks also led to the concept 
of network disease in the case of depression aiding the design 
of novel, multi-target antidepressants  [7] . 

 Last, but by no means least, ageing has also been conceived 
as a network disease  [50,70] . The multiple reasons and stages of 
biological ageing, the increasing variability of symptoms and 
malfunctions, both from one elderly person to the other and 
from one day to another, all call for a network-based analysis 
of the increasing amount of data collected so far. 

   7.   Target-sets of multi-target drugs: 
the help of networks 

 How should we find the relevant target-sets of multi-
target drugs? In the last decade several experimental and 
modeling approaches have been developed to identify 
single targets in a network context  [39,60,61,71-74] . Appropriate 
modifications of these approaches may constitute the first 
step for zooming in to a smaller set of potential targets. A high-
throughput combinative screen of all possible combinations 
may be a daunting task and prospect  [5] . How can we pin 
point those target combinations that might be relevant in the 
clinical setting? 

 Surprisingly, old-fashioned drug development might come 
back here to help:  in vivo  pharmacology (i.e., whole-animal 
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studies) might become important again  [75] . However, for more 
efficient  in vivo  testing, better animal models are needed. 
Better animal models can be achieved by humanizing the 
metabolic and signaling network of test animals. 

 Can the network approach help suggest potential target 
sets? The answer is not known at present. However, the authors 
have many promising tools to assess the relevance of their 
present, network-based knowledge on the complexity of the 
cell in pathologic states. The authors will list these in the 
Expert Opinion section. 

   8.   Conclusion 

 Combinatorial therapies have recently become one of the most 
successful drug development strategies. Multi-target drugs 
can be perceived as siblings of combinatorial therapies, where 
the different agents (often as many as five to six of them) are 
compressed into a single, integrated chemical entity. Multi-
target drugs expand the number of pharmacologically relevant 
target molecules by introducing a set of indirect, network-
dependent effects. Multi-target drugs usually have a low affinity 
towards their targets. An increasing amount of evidence shows 
that low affinity, especially if multiplied, does not mean low 
efficiency. On the contrary, several signaling and regulatory 
events are actually based on low-affinity interactions. Moreover, 
low-affinity binding of multi-target drugs eases the constraints 
of druggability and significantly increases the size of the 
druggable proteome. These effects tremendously expand the 
number of potential drug targets and will introduce novel 
classes of multi-target drugs with smaller side effects and 
toxicity. Cellular networks offer a large number of possibilities, 
such as hubs and bridges with high betweenness centrality 
to find target-sets of multi-target drugs. However, the ‘fuzzy-
ness’ (meaning uncertain and incomplete information) of 
cellular networks and the data sets on network diseases, 
such as cancer, diabetes and neurodegeneration, need a more 
sophisticated approach. 

   9.   Expert opinion: network-based, smart 
multi-target drugs of the future 

 We predict that in 5 – 10 years multi-target drugs will be 
much more common than it is today. The emerging knowl-
edge of recent years strongly suggests that these drugs have 
a better chance of affecting the complex equilibrium of 
whole cellular networks than drugs acting on a single 
target. Target expansion to indirect targets will lead to the 
dis covery of several novel classes of drugs. Moreover, it is 
sufficient that these multi-target drugs affect their targets 
only partially, which multiplies our target choices from the 
point of druggability. 

 Low-affinity, multi-target drugs might have another 
advantage. Weak links have been shown to stabilize complex net-
works, including macromolecular networks, ecosystems and social 
networks, buffering the changes after system perturbations. 

If multi-target, low-affinity drugs inhibit their targets, they 
change a strong link into a weak link, instead of eliminating 
the link completely. A weak activation also results in a weak 
link in most of the cases. Thus, multi-target drugs can increase 
the number of weak links in cellular networks and, thus, 
stabilize these networks, in addition to having multiple 
effects. Stabilization of the cells becomes especially important 
if we take into account that cells of stressed, sick and ageing 
organisms are at the ‘verge of chaos’, showing a much greater 
instability than their healthy counterparts  [29,46,70,76,77] . Thus, 
multi-target drugs may have multiple beneficial effects: 

   • they can be designed to act on a carefully selected set of 
primary targets, which help to sum up the action of the 
drug on key, therapeutically relevant secondary targets 

•      via the above-mentioned, indirect approach and their low 
affinity binding multi-target drugs may avoid the presently 
common dual-trap of drug resistance and toxicity 

     • finally, the low affinity, weak links of multi-target drugs 
have an important side effect: they stabilize the sick cell, 
which may be sometimes at least as beneficial as their 
primary therapeutic effect. 

   What is the 5 – 10 year perspective on fi nding the relevant 
target-sets of multi-target drugs? Here, our increasing knowledge 
of cellular networks will certainly play a key role in the future. 
The increasing complexity of the data sets requires more 
sophisticated tools to direct our attention to relevant areas of 
the information universe. In the last part of this review, we 
list a few ideas for future directions in the development of 
network analysis tool-kits: 

   • overlaps of network communities  [31] , which have a key role 
in the regulation of complex systems  [29] , may be efficient 
guides to restrict the initial target pool in search of target 
sets for multi-target drugs 

•      differential analysis of relevant cellular networks, (such as 
signaling networks, gene-regulatory networks, metabolic net-
works and protein–protein interaction networks) of healthy 
and sick cells may provide an even more efficient screen 

     • finally, the present development of analytical tools to assess 
the evolution and dynamism of whole cellular networks 
will reveal search methods to deconvolute the hidden 
masterminds of the primary target sets from the presently 
known, pharmacologically relevant secondary targets 
(Kovacs  et al. , patent application submitted). A variant of 
this approach has been called ‘reverse-engineering’, which 
deciphers potential targets by the analysis of the effect of 
a limited set of experimental perturbations  [71,78-80] . These 
approaches open the way to finding multiple-targets and 
to designing alternative target sets to mimic the action of 
existing, successful drugs 

   In summary, 10 years from now we will have a multitude 
of expanded cellular data sets having detailed and differential 
information on variable pairs of healthy and sick cells. These 
data sets will have graded information, which enables the 
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building of weighted and directed networks. Analytical tools 
will be developed to assess the complexity of these networks, 
keeping all data and giving a zoom in picture of any resolution 
in a computationally accessible, short time. Multi-target 
drugs will magnify the presently available target fi eld by 
introducing thousands of secondary targets, as well as other 
thousands of druggable proteins. This will all lead to the 
discovery of several entirely novel drug classes. Finally, we will 
enjoy the network option of fi ne-tuning of drug action of 
multi-target drugs by the targeted manipulation of certain 

elements of the already existing target sets of multi-target 
drugs, which may lead to the development of personalized 
medicines – at a low cost. 
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